Вопрос задан 06.02.2019 в 02:14. Предмет Геометрия. Спрашивает Галиуллина Ильдана.

Докажите, что средняя линия трапеции равна полусумме ее оснований.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перец Кристина.

 Пусть в трапеции ABCD  прямая EF есть средняя линия, т. е. соединяет середины непараллельных сторон АВ и DC. Проведем через точку F прямую, параллельную АВ и продолжим AD до пересечения с сейчас проведенной линией. Треугольники FDM и FNCравны, следовательно MD = NC. Четырехугольник EBNF есть параллелограмм (EB= l/2AB; FN = 1/2MN; AB-=MN; значит, ЕВ равно и параллельно FN и т. д.); поэтому EF= BN. Точно так же EF= AM. Зная это, пишем: BC=BN+NC=EF+NC MD=AD-DM=EF-NC BC+AD=EF=EF=CN-NC а откуда: EF = BC + AD/2

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос