Вопрос задан 26.04.2018 в 18:56. Предмет Геометрия. Спрашивает Холод Ирина.

Перпендикуляр, опущенный из точки пересечения диагоналей ромба на его сторону, делит ее на отрезки

длиной 3 см и 12 см. Найдите площадь ромба.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Верхотуров Тимур.

Рассмотрим треугольник ОСВ , он прямоугольный т.к диагонали в ромбе перпендикулярны , ОН - высота - потому что образует с СВ прямой угол, СВ -гипотенуза. Нам известны отрезки СН(3см)  и ВН(12см)
Воспользуемся одним из свойств высоты:
Высота, опущенная на гипотенузу, является средней пропорциональной величиной между проекциями катетов на гипотенузу - проекции катетов это и есть данные нам отрезки.
OH^{2} =CH*BH
 OH^{2} =3*12
 OH^{2} =36
 OH= \sqrt{36}
OH=6
 CB=CH+BH
CB=3+12
CB=15
S(COB)= \frac{OH*CB}{2}
S(COB)= \frac{15*6}{2}
S(COB)=45
Этот треугольник составляет 1/4 нашего ромба,значит, площадь ромба равна:
S(p)=4*S(COB)
S(p)=4*45
S(p)=180


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос