Вопрос задан 03.02.2019 в 19:33. Предмет Геометрия. Спрашивает Васильев Димас.

Отрезки AB и CD пересекаются в точке О, которая является серединой каждого из них. Докажите

равенство углов ACB и DBC
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Неред Дима.
) Рассмотрим треугольники АОС и ДОВ. 
Угол АОС равен углу ДОВ, так как они вертикальные.
АО = ОВ (так как О - середина АВ)
ОС=ОД (так как О - середина СД), ⇒
Треугольники равны по двум сторонам и углу между ними, откуда следует равенство сторон АС и ВД. 
2) Рассмотрим треугольники СОВ и АОД.
Угол СОД равен углу АОД, так как они вертикальные.
СО = ОД (по доказанному)
ОВ = ОД (по доказанному), ⇒
Треугольники равны по двум сторонам и углу между ними, откуда следует равенство сторон СВ и АД.
3) Рассмотрим треугольники АСВ и ВДА.
АВ - общая сторона.
АС = ВД (по доказанному)
ВС = АД (по доказанному), ⇒
Треугольники равны по трём сторонам (третий признак равенства треугольников), что и требовалось доказать.  
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос