Вопрос задан 27.01.2019 в 13:39. Предмет Геометрия. Спрашивает Файнер Алина.

Объем треугольной пирамиды SABC равен 35.Точка D лежит на ребре SC И ДЕЛИТ ЕГО В ОТНОШЕНИИ 2:5

считая от вершины S.ОТРЕЗОК MN СРЕДНЯЯ ЛИНИЯ ТРЕУГОЛЬНИКА ABC ПАРАЛЛЕЛЬНАЯ СТОРОНЕ AB.НАЙДИТЕ ОБЪЕМ ПИРАМИДЫ DMNC
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Petrashchuk Nadia.
V(SABC) = 35 = S(ABC)*H / 3
S(ABC)*H = 3*35
MN = AB / 2
V(DMNC) = S(MNC)*h / 3
высоты H и h будут связаны в подобные треугольники...
H / h = SC / DC = 7/5
5H = 7h => H = 7h / 5
треугольники ABC и CMN подобны с коэффициентом подобия AB/MN = 2
значит, их площади относятся как квадрат коэффициента подобия
S(ABC) / S(CMN) = 4
S(ABC) = 4*S(CMN) 
S(ABC)*H = 3*35 = 4*S(CMN) * 7h / 5 
S(MNC)*h = 3*35*5 / (4*7) = 75/4
V(DMNC) = S(MNC)*h / 3 = 75 / (4*3) = 25/4 = 6.25
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос