
Вопрос задан 25.04.2018 в 00:33.
Предмет Геометрия.
Спрашивает Комков Дима.
В равнобедренной трапеции разность оснований равна 20,а радиус вписанной в нее окружности равен
2корень 14.найдите стороны трапеции

Ответы на вопрос

Отвечает Христофорова Уля.
В четырехугольник можно вписать окружность только тогда, когда равны суммы его противоположных сторон.
АВСД - трапеция, АВ = СД - боковые стороны, ВС и АД - основания.
Проведем из вершин В и С высоты ВН и СЕ.
Радиус вписанной окружности равен половине высоты, значит высота
ВН = 2 * 2√14 = 4√14
Поскольку трапеция равнобедренная, то треугольники АНВ = ДЕС по катету (ВН = СЕ) и гипотенузе (АВ = СД), тогда АН = ЕД.
АН = 20 : 2 =10
АВ = √(100 + 224) = 18
АВ + СД = 18 + 18 = 36
АД + ВС = 36
АД = (36 + 20) : 2 = 28
СВ = 28 - 20 = 8
Ответ: 18, 18, 28, 8.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili