
Вопрос задан 22.04.2018 в 19:27.
Предмет Геометрия.
Спрашивает Бурая Валерия.
Дано: АМ и СЕ - медианы треугольника ABC, треугольник ABC - равнобедренный, с основанием АС. Точка
О - точка пересечения медиан треугольника АBC. Доказать: Треугольник АОС - равнобедренный

Ответы на вопрос

Отвечает Стрельникова Оля.
Проведём медиану из ∠B .
Поскольку ΔABC равнобедренный , то медиана является и биссектрисой.
∠ABO = ∠ CBO
AB = BC (ΔABC равнобедренный с основанием AC)
BO - общая
ΔABO = ΔCBO по первому признаку
AO = OC
ΔAOC равнобедренный
Ч.т.д.
Если вы что-то не поняли или нашли ошибку , то напишите , пожалуйста , автору .
Powered by Plotofox


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili