Вопрос задан 14.01.2019 в 18:08. Предмет Геометрия. Спрашивает Жанмуратов Дильен.

В треугольнике АВС равны углы А и С. На стороне АС взяты точки Д и Е такие, что АД=СЕ. Докажите,

что треугольник ДВЕ равнобедренный.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зеленогорская Лина.

Т.к. углы A и С равны, то треугольник ABC равнобедренный. Проведем медиану BF к AC, которая в равнобедренном треугольнике является вершиной и высотой. Значит AF=FC. AF-DF=FC-FE, значит DF=FE. Значит DB соответсвенно равна BE и Dbe равнобедренный по двум сторонам.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос