
Вопрос задан 13.01.2019 в 16:36.
Предмет Геометрия.
Спрашивает Мецкер Ника.
Найти углы прямоугольного треугольника, если биссектрисы двух его углов пересекаются под углом
70градусов

Ответы на вопрос

Отвечает Михайлова Алина.
Сумма острых углов прямоугольного треугольника 90°. Поэтому сумма их половин равна 45°, и величина углов, образуемых их биссектрисами, всегда будет 45° и 135°.
По условию угол, образуемый биссектрисами, равен 70°, следовательно, одна из биссектрис проведена из прямого угла.
Обозначим вершины треугольника А, В, С. Биссектрисы СМ и АК. Точка пересечения биссектрис О.
∠МОА=70°
∠ОСА=45°.
∠МОА - внешний для ∆ СОА и равен сумме внутренних не смежных с ним углов. ⇒
∠ОАС=70°- 45°=25°⇒
∠ВАС=2•25°=50°
∠АВС=90°-50°=40°.
Ответ: 50° и 40°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili