
Вопрос задан 03.01.2019 в 05:06.
Предмет Геометрия.
Спрашивает Рыбак Эльвира.
Какие из элементов должны быть равны у △MNP и △M1N1P1, чтобы они были равны по двум сторонам и
углу? В равнобедренном треугольнике АВС с основанием АС и углом при вершине В, равным 36о, проведена биссектриса АК. Докажите, что треугольники СКА и АКВ равнобедренные..

Ответы на вопрос

Отвечает Беккер Аделина.
1вариант MN=M1N1
NP=N1P1
∠MNP=M1N1P1
2 вариант
NP=N1P1
PM=P1M1
∠NPM=∠N1P1M1
3 вариант
PM=P1M1
MN=M1N1
PMN=P1M1N1
∠BAC=∠BCA=(180-36)/2=72
∠BAK=∠KAC=36
∠ABK=∠BAK значит BKA равнобедренный
∠AKC=180-72-36=72 значит KAC тоже равнобедренный
NP=N1P1
∠MNP=M1N1P1
2 вариант
NP=N1P1
PM=P1M1
∠NPM=∠N1P1M1
3 вариант
PM=P1M1
MN=M1N1
PMN=P1M1N1
∠BAC=∠BCA=(180-36)/2=72
∠BAK=∠KAC=36
∠ABK=∠BAK значит BKA равнобедренный
∠AKC=180-72-36=72 значит KAC тоже равнобедренный


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili