Вопрос задан 02.01.2019 в 23:03. Предмет Геометрия. Спрашивает Леонардыч Евгений.

В параллелограмме ABCD AB=4, AD=5, BD=6. Найдите угол CBD и площадь параллелограмма.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Денисова Александра.
Противоположные стороны параллелограмма равны, поэтому
по теореме косинусов можно сразу найти косинус угла СВD в треугольнике CBD:
Cos(CBD)=(BC²+BD²-CD²)/(2*BC*BD) или в нашем случае:
Cos(CBD)=(25+36-16)/60=3/4.
Ответ: <CBD=arccos(3/4) или ≈41,4°.
Синус угла CBD равен sin(CBD)=√(1-9/16)=√7/4.
Диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна Sabcd=2*Sbcd.
Scbd=(1/2)BC*BD*Sin(CBD) или Scbd=15√7/4.
Sabcd=2*15√7/4=15√7/2=7,5√7.
Ответ: Sabcd=7,5√7.

Для проверки найдем по теореме косинусов в треугольнике АВD косинус угла А:
CosA=(16+25-36)/40=1/8.
SinA=√(1-1/64)=(√63)/8=(3√7)/8.
Тогда площадь параллелограмма равна
Sabcd=AB*AD*SinA или Sabcd=(20*3√7)/8=15√7/2=7,5√7.
Ответ совпал с полученным ранее значением.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос