
Вопрос задан 31.12.2018 в 21:57.
Предмет Геометрия.
Спрашивает Рахмангулов Тимур.
Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K так, что прямые CK
и AE параллельны. Отрезки CK и BE пересекаются в точке O. а) Докажите, что CO=KO. б) Найдите отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет 0,09 площади трапеции ABCD.

Ответы на вопрос

Отвечает Лысейко Валерия.
Первый пункт очевидный.
Второй:
Можно заметить, что площадь трапеции равна площади треугольник ABT, потому что они состоят из одинаковых частей. (ABCE+AED). Ну и треугольники AED=CET равны по стороне и двум прилежащим углам.
Дальнейшее решение на фотографии
Второй:
Можно заметить, что площадь трапеции равна площади треугольник ABT, потому что они состоят из одинаковых частей. (ABCE+AED). Ну и треугольники AED=CET равны по стороне и двум прилежащим углам.
Дальнейшее решение на фотографии


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili