
Вопрос задан 27.12.2018 в 21:32.
Предмет Геометрия.
Спрашивает Платонов Артур.
В равнобедренном треугольнике основание равно 10 см, боковая сторона 13 см. Найти радиус вписанного
круга.

Ответы на вопрос

Отвечает Романюха Валерия.
треугольник АВС, АВ=ВС=13, АС=10, проводим высоту=медиане=биссектрисе ВН на АС, АН=НС=1/2АС=10/2=5
треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(169-25)=12
площадьАВС=1/2АС*ВН=1/2*10*12=60
радиу описанной окружности=(АВ*ВС*АС)/(4*площадьАВС)=(13*13*10)/(4*60)=7 и 1/24,
радиус вписанной=площадь/полупериметр, полупериметр=(13+13+10)/2=18, радиус вписанной=60/18=3 и 1/3
треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(169-25)=12
площадьАВС=1/2АС*ВН=1/2*10*12=60
радиу описанной окружности=(АВ*ВС*АС)/(4*площадьАВС)=(13*13*10)/(4*60)=7 и 1/24,
радиус вписанной=площадь/полупериметр, полупериметр=(13+13+10)/2=18, радиус вписанной=60/18=3 и 1/3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili