
Вопрос задан 18.12.2018 в 18:25.
Предмет Геометрия.
Спрашивает Линяев Андрей.
В равнобедренный треугольник АВС (АВ=ВС) вписали окружность. Касательная L к окружности,
параллельна прямой АС, пересекает стороны АВ и ВС в точках Т и Р соответственно. Известно, что периметр четырёхугольника АТРС равен 30 см. и АС=12 см. Вычислите длину радиуса окружности.

Ответы на вопрос

Отвечает Кубіцька Віка.
АТРС-равнобедренная трапеция. У трапеции, описанной около четырехугольника (трапеции в нашем случае) сумма противоположных сторон равна.
ТР+АС=30/2=15
АС=12см, тогда ТР=15-12=3см
АТ+РС=15 и так как АТ=РС, то АТ=РС=15/2=7,5см
Диаметр окружности является ее высотой ТН (опусти перпендикуляр из Т на АС).
АН=(АС-ТР)/2=(15-12)/2=4,5см
По теоремме пифагора:
ТН=√(АТ^2-AH^2)=√(56,25-20,25)=√36=6см
ТН-это диаметр, а радиус равен его половине, т.е.
r=ТР/2=6/2=3см


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili