Вопрос задан 27.11.2018 в 23:19. Предмет Геометрия. Спрашивает Яновский Арсений.

Прямая a касается описанной около треугольника ABC окружности в точке A, отрезок AD - биссектриса

этого треугольника. Докажите, что односторонние углы, образованные припересечении прямых a и BC секущей AD , равны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Антонова Юлиана.
∠CDA = ∠DAB + ∠CBA;
∠DAB = ∠DAC;
∠CBA = ∠CAa (между касательной a и секущей CA); оба эти угла "измеряются" половиной дуги AC. ∠CBA - вписанный угол, опирающийся на эту дугу, а про второй угол я уже всё сказал :).
∠DAa = ∠DAC + ∠CAa;
Всё доказано. ∠CDA = ∠DAa;
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос