Вопрос задан 30.10.2018 в 00:03. Предмет Геометрия. Спрашивает Рибчак Анжеліка.

Оснрви рівнобічної трапеції дорівнюють 4см і 12см. Діагональ ділить ії тупий кут навпіл. Знайти

площу трапеції.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белинин Макс.
Диагональ-биссектриса отрежет от трапеции равнобедренный треугольник)))
т.к. накрест лежащие углы при параллельных основаниях трапеции и секущей-диагонали равны...
боковые стороны равны большему основанию
по т.Пифагора можно найти высоту...

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Given Information:

We are given that the bases of a trapezoid (trapezium) measure 4 cm and 12 cm, and that one of the diagonals divides the trapezoid into two equal parts.

Solution:

To find the area of the trapezoid, we can use the formula:

Area = (1/2) * (sum of the bases) * (height)

In this case, we are not given the height directly, but we can find it using the Pythagorean theorem. Since one of the diagonals divides the trapezoid into two equal parts, it also acts as the height of the trapezoid.

Let's denote the shorter base as 'a' (4 cm) and the longer base as 'b' (12 cm). The diagonal that divides the trapezoid into two equal parts will be denoted as 'd'.

Using the Pythagorean theorem, we can find the height 'h' of the trapezoid:

h^2 = d^2 - ((b - a)/2)^2

Since the diagonal divides the trapezoid into two equal parts, we can consider one of the resulting right triangles. In this triangle, the hypotenuse is 'd', and the difference between the bases is the base of the right triangle. The height of the right triangle is the height of the trapezoid.

Now, let's substitute the given values into the formula:

h^2 = d^2 - ((12 - 4)/2)^2

Simplifying:

h^2 = d^2 - 4^2

h^2 = d^2 - 16

Since the diagonal divides the trapezoid into two equal parts, we can consider one of the resulting right triangles. In this triangle, the hypotenuse is 'd', and the difference between the bases is the base of the right triangle. The height of the right triangle is the height of the trapezoid.

Now, let's substitute the given values into the formula:

h^2 = d^2 - ((12 - 4)/2)^2

Simplifying:

h^2 = d^2 - 4^2

h^2 = d^2 - 16

Now, we have two equations:

h^2 = d^2 - 16 (Equation 1)

h^2 = d^2 - 16 (Equation 1)

To find the value of 'd', we can equate the two equations:

d^2 - 16 = d^2 - 16

Simplifying, we get:

0 = 0

This means that the value of 'd' can be any real number. Since the diagonal divides the trapezoid into two equal parts, the value of 'd' can be any positive real number.

Now, let's calculate the area of the trapezoid using the formula:

Area = (1/2) * (a + b) * h

Substituting the given values:

Area = (1/2) * (4 + 12) * h

Area = (1/2) * 16 * h

Area = 8h

Since 'h' can be any positive real number, the area of the trapezoid can be any positive real number.

Therefore, the area of the trapezoid cannot be determined based on the given information.

Please let me know if there is anything else I can help you with.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос