Вопрос задан 24.09.2018 в 03:42. Предмет Геометрия. Спрашивает Соловьева Гульназ.

ПОМОГИТЕ СРОЧНА РЕШИТЬ ЗАДАЧУ ПОЖАЛУЙСТА!!!!!!!!!!!!!!! луч АD БИССЕКТРИСА УГЛА А на стороне угла

А отмечены точки В И С так что угол АDВ равен углу АDC,докажите что АВ равен АС
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ростовский Ваня.
Всё просто всё очень просто                       
ответ
они не дойдут





0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

The problem states that in triangle ADC, point B lies on side AD, and points V and S are marked on side AD such that angle ADV is equal to angle ADC. The task is to prove that AB is equal to AC.

Solution

To prove that AB is equal to AC, we can use the fact that angle ADV is equal to angle ADC. Let's consider the two triangles ABV and ACS.

In triangle ABV: - Angle ADV is equal to angle ADC (given). - Angle ABV is common to both triangles.

Therefore, by the Angle-Angle (AA) similarity criterion, triangle ABV is similar to triangle ACS.

Since the two triangles are similar, their corresponding sides are proportional. This means that the ratio of the lengths of corresponding sides in the two triangles is equal.

Let's denote the length of AB as x and the length of AC as y. Then, we can write:

AB/AC = BV/CS

Since triangle ABV is similar to triangle ACS, we can substitute the corresponding side lengths:

x/y = BV/CS

Now, let's consider triangle ADC. Since BV and CS are marked on side AD, we can write:

AD = AB + BV AD = AC + CS

Substituting these expressions into the previous equation, we get:

x/y = (AB + BV)/(AC + CS)

Since angle ADV is equal to angle ADC, we can use the Angle Bisector Theorem, which states that the ratio of the lengths of the segments formed by an angle bisector is equal to the ratio of the lengths of the opposite sides. In this case, the angle bisector is AD, and the opposite sides are AB and AC.

Applying the Angle Bisector Theorem, we have:

AB/AC = BV/CS

Substituting this into the previous equation, we get:

x/y = AB/AC

Since the ratio of the lengths of corresponding sides in the two triangles is equal, we can conclude that AB is equal to AC.

Therefore, we have proved that AB is equal to AC.

Conclusion

In triangle ADC, if point B lies on side AD and points V and S are marked on side AD such that angle ADV is equal to angle ADC, then AB is equal to AC.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос