Вопрос задан 26.08.2018 в 10:02. Предмет Геометрия. Спрашивает Мельник Тамара.

сторона ромба равна 8 см,а его высота 5 см.найти площадь

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ястребов Кирилл.

Поскольку ромб является параллелограммом,его площадь равна произведению его стороны на высоту. Площадь=40 см.

0 0
Отвечает Такуми Юра.

площадь ромба равна произведению стороны на высоту: 8*5-40 см^2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади ромба, вам понадобится формула:

\[ \text{Площадь} = \frac{d_1 \cdot d_2}{2} \]

где \(d_1\) и \(d_2\) - диагонали ромба.

У ромба все четыре стороны равны, и две противоположные диагонали тоже равны. Если одна сторона ромба равна 8 см, то другая сторона также равна 8 см. Таким образом, длины диагоналей равны.

Также, учитывая, что высота ромба (расстояние от центра ромба до любой его стороны) равна 5 см, мы можем использовать эту информацию для нахождения площади.

Теперь, диагонали ромба можно представить в виде прямоугольного треугольника, где высота этого треугольника равна половине одной из диагоналей, а основания треугольника - стороны ромба.

\[ \text{Площадь} = \frac{d_1 \cdot d_2}{2} = \frac{8 \cdot 8}{2} = 32 \, \text{см}^2 \]

Таким образом, площадь ромба равна 32 квадратным сантиметрам.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос