
Стороны треугольника равны 8 см 10 см 14 см найдите стороны треугольника вершинами которого служат
середины сторон данного треугольника

Ответы на вопрос

Средние линии равны половине стороны, которой они параллельны > 4 см, 5 см и 7 см



Для решения этой задачи мы можем использовать свойство серединных перпендикуляров треугольника. Согласно этому свойству, каждая сторона треугольника, соединяющая вершину с серединой противоположной стороны, имеет половину длины этой стороны.
У нас дан треугольник со сторонами 8 см, 10 см и 14 см. Чтобы найти стороны треугольника, вершинами которого служат середины сторон данного треугольника, нам нужно разделить длины исходных сторон пополам.
Вычислим стороны треугольника с помощью формулы:
Сторона треугольника A = (сторона исходного треугольника BC) / 2
Сторона треугольника B = (сторона исходного треугольника AC) / 2
Сторона треугольника C = (сторона исходного треугольника AB) / 2
Решение:
Сторона треугольника A = 10 см / 2 = 5 см
Сторона треугольника B = 14 см / 2 = 7 см
Сторона треугольника C = 8 см / 2 = 4 см
Таким образом, стороны треугольника, вершинами которого служат середины сторон данного треугольника, равны 5 см, 7 см и 4 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili