Вопрос задан 06.08.2018 в 07:13. Предмет Геометрия. Спрашивает Смирнов Руслан.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, Ее большая большая боковая

сторона равна 7 найдите радиус окружности
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Митрофанов Рома.
Если в трапецию вписана окружность то сумма противолежащих сторон равна. Т.е. большая боковая сторона плюс меньшая (она же высота) равна 22/2.
7+х=11
х=4
Радиус вписанной окружности равен 4/2=2
Ответ:2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Perimeter of a Trapezoid Inscribed in a Circle

To find the radius of the circle inscribed in a trapezoid, we need to use the given information about the perimeter and the length of one of the longer sides.

Let's break down the problem step by step:

1. We are given that the perimeter of the trapezoid is 22. 2. One of the longer sides of the trapezoid is given as 7.

To find the radius of the circle, we need to use the formula for the perimeter of a trapezoid:

Perimeter = sum of all sides

In this case, the perimeter is given as 22, so we can set up the equation:

22 = a + b + c + d

where a, b, c, and d are the lengths of the sides of the trapezoid.

Since we know that one of the longer sides is 7, we can substitute it into the equation:

22 = 7 + b + c + d

Now, we need to find the lengths of the other sides of the trapezoid. Unfortunately, the given information does not provide enough details to determine the lengths of the other sides.

Therefore, without additional information, we cannot calculate the radius of the circle inscribed in the trapezoid.

Please provide more information or clarify the problem if possible, and I'll be happy to help further.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос