
Докажите что площадь параллелограмма равна произведению двух его смежных сторон на синус угла между
ними?

Ответы на вопрос




Proving the Area of a Parallelogram
To prove that the area of a parallelogram is equal to the product of its two adjacent sides multiplied by the sine of the angle between them, we can use the following approach:
Step 1: Define the Area of a Parallelogram The area of a parallelogram is given by the formula: \[ \text{Area} = \text{base} \times \text{height} \]
Step 2: Relate the Area to the Sides and the Angle We can express the height of the parallelogram in terms of one of its sides and the included angle. Let's consider a parallelogram with sides \( AB \) and \( AD \), and the included angle \( \angle BAD \).
The height of the parallelogram can be expressed as: \[ \text{height} = AB \times \sin(\angle BAD) \]
Step 3: Substitute the Height into the Area Formula Substituting the expression for the height into the area formula, we get: \[ \text{Area} = AB \times (AB \times \sin(\angle BAD)) \]
Step 4: Simplify the Expression Simplifying the expression, we get: \[ \text{Area} = AB^2 \times \sin(\angle BAD) \]
This shows that the area of a parallelogram is indeed equal to the product of its two adjacent sides multiplied by the sine of the angle between them.
Conclusion
Therefore, we have successfully proven that the area of a parallelogram is equal to the product of its two adjacent sides multiplied by the sine of the angle between them.[[6 #]], [[9 #]]


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili