
Окружность,AC и BD-хорды,пересекаются в точке m. MC<AM на 3,5. DM=4 и BM=0.5.Найти AC


Ответы на вопрос




Problem Analysis
We are given a circle with chords AC and BD intersecting at point M. We are also given that MC is 3.5, DM is 4, and BM is 0.5. We need to find the length of AC.Solution
To find the length of AC, we can use the intersecting chords theorem, which states that when two chords intersect inside a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.Let's denote the length of AM as x and the length of CM as y. Since MC is 3.5, we have y = 3.5. We are also given that DM is 4 and BM is 0.5.
According to the intersecting chords theorem, we can write the following equation:
AM * BM = CM * DM
Substituting the given values, we have:
x * 0.5 = 3.5 * 4
Simplifying the equation, we get:
0.5x = 14
Dividing both sides by 0.5, we find:
x = 28
Therefore, the length of AM is 28.
To find the length of AC, we can use the Pythagorean theorem. In a right triangle with sides AM, CM, and AC, we have:
AC^2 = AM^2 + CM^2
Substituting the values, we have:
AC^2 = 28^2 + 3.5^2
Calculating the values, we find:
AC^2 = 784 + 12.25
AC^2 = 796.25
Taking the square root of both sides, we find:
AC ≈ 28.23
Therefore, the length of AC is approximately 28.23.
Answer
The length of AC is approximately 28.23.

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili