
Из точек А и Б к прямой а проведены равные первендикуляры АС ВК. О - середина СК. Найдите длину
отрезка АО, если ВО - 8 см

Ответы на вопрос

Ответ:
8 см
Объяснение:
По условию АС=ВК, СО=ОК, ∠С=∠К=90°, тогда ΔАСО=ΔВКО,
значит АО=ОВ=8 см.



Для решения данной задачи, нам необходимо найти длину отрезка АО, при условии, что ВО равно 8 см.
Решение:
Мы знаем, что АС и ВК - равные перпендикуляры, а О - середина СК.Поскольку АС и ВК - равные перпендикуляры, то АС = ВК.
Также, по определению середины отрезка, СО = ОК.
Таким образом, мы можем представить данную ситуацию следующим образом:
``` A-----------------C | | | | | O | | | | | B-----------------K ```
Мы знаем, что ВО = 8 см. Также, поскольку АС = ВК, то СО = ОК. Поэтому, СО = ОК = 8 см.
Теперь, чтобы найти длину отрезка АО, мы можем использовать теорему Пифагора для прямоугольного треугольника АСО:
АО^2 = АС^2 + СО^2
Подставляя известные значения, получаем:
АО^2 = (АС)^2 + (СО)^2
**АО^2 = (ВК)^2 + (


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili