Вопрос задан 29.07.2018 в 02:42. Предмет Геометрия. Спрашивает Плетникова Катя.

В параллелограмме ABCD проведён отрезок CM, где MеAD, который пересекает диагональ BD в точке K,

Skcd=6 см^2, Skmd=4 см^2. Найдите площадь параллелограмма.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котик Даша.
Т.к. треугольники KCD и KMD имеют общую высоту из вершины D и основания KC и MK, то их площади относятся так же как их основания, т.е. KC/MK=6/4=3/2. Т.к. треугольник BKC подобен треугольнику DKM с коэффициентом подобия 3/2, то площадь S(BKC)=(3/2)²·S(DKM)=(9/4)·4=9. Дальше S(BDC)=S(BKC)+S(KCD)=9+6=15 см².
S(ABCD)=2S(BDC)=2·15=30 см².
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос