Вопрос задан 04.10.2023 в 16:21. Предмет Геометрия. Спрашивает Ким Анна.

При яких значення m і n вектори а(-2;8;-4) і b(-6; m;n) колінеарні?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Pascari Denis.

Якщо є вектори a (a₁;a₂;a₃), b (b₁; b₂ b₃) і вони колінеарні, то

a₁/b₁ = a₂/b₂ = a₃/b₃ формула

Рішення дивись на скриншоті !!!


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Два вектори a і b колінеарні, якщо один може бути отриманий з іншого множенням на константу. Можемо використовувати це визначення, щоб знайти значення m і n, при яких вектори a і b колінеарні.

Для того, щоб вектор a(-2;8;-4) був колінеарний вектору b(-6; m; n), необхідно, щоб існувала константа k така, що:

a = k * b

Отже, ми можемо записати рівняння:

(-2; 8; -4) = k * (-6; m; n)

Тепер ми можемо розділити кожну компоненту вектору a на відповідну компоненту вектору b і отримати наступні рівняння:

-2 = -6k 8 = mk -4 = nk

Перше рівняння:

-2 = -6k

Для знаходження k поділімо обидва боки рівняння на -6:

k = (-2) / (-6) = 1/3

Друге рівняння:

8 = mk

Для знаходження m поділімо обидва боки рівняння на 8:

m = 8 / 8 = 1

Третє рівняння:

-4 = nk

Для знаходження n поділімо обидва боки рівняння на -4:

n = (-4) / (-4) = 1

Отже, коли m = 1 і n = 1, вектори a і b колінеарні.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос