Вопрос задан 27.09.2023 в 23:30. Предмет Геометрия. Спрашивает Рыжков Данил.

100 БАЛЛОВ Напиши уравнение окружности, которая проходит через точку 7 на оси Ox и через точку 10

на оси Oy, если известно, что центр находится на оси Ox. (Дроби максимально сократите. Если в ответе получилось целое число, то запишите его в виде дроби со знаменателем 1.)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Beibitov Aidar.

Ответ: (x+51/14)²+y²=(149/14)²

Объяснение:

Запишем уравнение окружности в виде (x-a)²+(y-b)²=R², где a и b - координаты центра окружности, R - её радиус. Так как по условию центр окружности находится на оси ОХ, то b=0. Тогда уравнение окружности принимает вид: (x-a)²+y²=R². Подставляя в это уравнение координаты данных точек, получаем систему уравнений:

(7-a)²+0²=R²

(0-a)²+10²=R²,

или:

(7-a)²=R²

a²+100=R²

Решая её, находим a=-51/14 и R²=(149/14)². Поэтому искомое уравнение окружности таково: (x+51/14)²+y²=(149/14)²  

0 0
Отвечает Пак Акнур.

Думаю так - правильно


0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос