
Вопрос задан 26.09.2023 в 19:58.
Предмет Геометрия.
Спрашивает Антанесян Тигран.
Дана окружность с центром O . OA , OB , OC − радиусы этой окружности. Точка B находится между
точками А и C . Найди площадь меньшего кругового сектора AOB , если известно, что дуга AC равна 165(градусов) , а дуга BC− 145(градусов) . Радиус окружности равен 9 Запиши в поле ответа значение, поделённое на π .

Ответы на вопрос

Отвечает Велиева Сайде.
Решение на фото
Ответ: 11,25




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения площади меньшего кругового сектора AOB, мы можем воспользоваться формулой для площади сектора:
Площадь сектора = (мера дуги / 360 градусов) * π * r^2
где:
- мера дуги - угол в градусах между двумя радиусами, ограничивающими сектор (в данном случае, угол AOB),
- r - радиус окружности.
В данной задаче у нас уже даны меры дуги AC и BC:
- Дуга AC равна 165 градусам.
- Дуга BC равна 145 градусам.
Теперь мы можем найти угол AOB, вычтя угол BC из угла AC:
Угол AOB = AC - BC = 165° - 145° = 20°
Теперь мы можем использовать формулу для площади сектора:
Площадь сектора AOB = (20° / 360°) * π * 9^2
Площадь сектора AOB = (1/18) * π * 81
Площадь сектора AOB = (9/2) * π
Ответ, поделенный на π, равен:
Площадь сектора AOB = 9/2
Таким образом, площадь меньшего кругового сектора AOB равна 9/2π.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili