
Площа основи правильної трикутної призми дорівнює 25корень из 3 см^2 . Обчислити площу бічної
поверхні призми, якщо її бічне ребро дорівнює 16 см

Ответы на вопрос

Спершу знайдемо висоту призми за формулою площі основи та об'єму:
Об'єм призми (V) = Площа основи (S_основи) * Висота (h) / 3
S_основи = 25√3 см²
V = S_основи * h / 3
h = 3V / S_основи
З формули об'єму призми обчислимо:
h = 3 * (S_основи)^(3/2) / S_основи = 3 * (25√3)^(3/2) / 25√3 = 3 * 25^(3/2) * (√3)^(3/2) / 25√3 = 3 * 25^(3/2) * 3 / 25√3 = 3 * 75√3 / 25√3 = 3 * 3 = 9 см
Тепер можемо знайти площу бічної поверхні призми:
Бічна поверхня призми (S_бічна) = Периметр основи * Висота
Трикутна призма має рівносторонній трикутник як основу. Периметр рівностороннього трикутника дорівнює 3 * сторона.
Сторона трикутника (a) = sqrt(S_основи / (sqrt(3) / 4))
= sqrt(25√3 / (sqrt(3) / 4)) = sqrt(25√3 * 4 / sqrt(3)) = sqrt(100√3 / √3) = sqrt(100) = 10 см
Периметр основи (P_основи) = 3 * a = 3 * 10 = 30 см
Тепер можемо обчислити бічну поверхню:
S_бічна = P_основи * h = 30 см * 9 см = 270 см²
Отже, площа бічної поверхні призми дорівнює 270 квадратних сантиметрів.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili