Вопрос задан 17.07.2018 в 02:59. Предмет Геометрия. Спрашивает Филатов Александр.

На сторонах ав вс ас равнобедренного треугольника авс с основанием ас отмечены точки м,к,р

соответственно так,что угол амр равен углу ркс и ам равен кс .доказать что мр равно рк. Доказать что прямые мк и вр взаимно перпендикулярны
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Горбенко Ульяна.

АМ = КС по условию,
∠АМР = ∠СКР по условию,
∠МАР = ∠КСР как углы при основании равнобедренного треугольника, ⇒
ΔМАР = ΔКСР по стороне и двум прилежащим к ней углам, ⇒
МР = КР

Из равенства треугольников так же следует, что АР = РС, значит, ВР - медиана и высота ΔАВС, т.е. ВР⊥АС.

ВМ = ВА - МА
ВК = ВС - КС, а т.к. ВА = ВС и МА = КС
ВМ = ВК, ΔВКМ равнобедренный.

Тогда ∠ВМК = ∠ВКМ = (180° - ∠В)/2,
но и ∠ВАС = ∠ВСА = (180° - ∠В)/2, значит,
∠ВМК = ∠ВАС, а это соответственные углы при пересечении прямых АС и МК секущей АВ, значит АС║МК.
ВР⊥АС, ⇒ ВР⊥МК


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос