
Вопрос задан 17.07.2018 в 02:59.
Предмет Геометрия.
Спрашивает Филатов Александр.
На сторонах ав вс ас равнобедренного треугольника авс с основанием ас отмечены точки м,к,р
соответственно так,что угол амр равен углу ркс и ам равен кс .доказать что мр равно рк. Доказать что прямые мк и вр взаимно перпендикулярны

Ответы на вопрос

Отвечает Горбенко Ульяна.
АМ = КС по условию,
∠АМР = ∠СКР по условию,
∠МАР = ∠КСР как углы при основании равнобедренного треугольника, ⇒
ΔМАР = ΔКСР по стороне и двум прилежащим к ней углам, ⇒
МР = КР
Из равенства треугольников так же следует, что АР = РС, значит, ВР - медиана и высота ΔАВС, т.е. ВР⊥АС.
ВМ = ВА - МА
ВК = ВС - КС, а т.к. ВА = ВС и МА = КС
ВМ = ВК, ΔВКМ равнобедренный.
Тогда ∠ВМК = ∠ВКМ = (180° - ∠В)/2,
но и ∠ВАС = ∠ВСА = (180° - ∠В)/2, значит,
∠ВМК = ∠ВАС, а это соответственные углы при пересечении прямых АС и МК секущей АВ, значит АС║МК.
ВР⊥АС, ⇒ ВР⊥МК



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili