Вопрос задан 12.07.2023 в 03:53. Предмет Геометрия. Спрашивает Сорокопудова Анастасия.

Обчисліть довжину більшої діагоналі паралелограма, сторони якого дорівнюють 7см та 15см, а довжина

меншої діагоналі - 12см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковалёв Дима.

Ответ:

2√101 см

Объяснение:

Дано: КМРТ - паралелограм, КМ=РТ=7 см, МР=КТ=15 см, КР=12 см. Знайти МТ.

Сума квадратів діагоналей паралелограма дорівнює подвоєній сумі квадратів його сторін:

МТ²+КР²=2(КМ²+МР²)

МТ²=2(49+225)-144=404;  МТ=√404=2√101 см.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Діагоналі паралелограма можуть бути знайдені за допомогою формул:

Довжина більшої діагоналі (D1) і меньшої діагоналі (D2) зв'язані зі сторонами паралелограма (a і b) наступним чином:

D1^2 = a^2 + b^2 + 2ab * cos(θ) D2^2 = a^2 + b^2 - 2ab * cos(θ)

де θ - кут між сторонами паралелограма.

У нашому випадку паралелограм правильний, тобто кути між сторонами 90 градусів, тому cos(90°) = 0.

За умовами завдання, a = 7 см і b = 15 см.

Тоді довжина меньшої діагоналі (D2) дорівнює 12 см:

D2^2 = 7^2 + 15^2 - 2 * 7 * 15 * cos(90°) D2^2 = 49 + 225 - 0 D2^2 = 274

D2 = √274 D2 ≈ 16.55 см

Тепер можемо знайти довжину більшої діагоналі (D1), використовуючи ту саму формулу:

D1^2 = 7^2 + 15^2 + 2 * 7 * 15 * cos(90°) D1^2 = 49 + 225 + 0 D1^2 = 274

D1 = √274 D1 ≈ 16.55 см

Таким чином, довжина більшої діагоналі паралелограма також дорівнює приблизно 16.55 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос