
Вопрос задан 13.07.2018 в 13:25.
Предмет Геометрия.
Спрашивает Барановський Владислав.
Ширина водохранилища равна 2,4 джан (1 джан = 10 чи). В его центре растёт тростник, высота которого
выше уровня воды составляет 4чи. Этот тростник можно пригнуть таким образом, что его верхушка коснётся берега. Найдите глубину водохранилища и высоту камыша».

Ответы на вопрос

Отвечает Буянтуева Арина.
Приняв глубину воды за h, получим: Расстояние до берега от середины водоема 24:2=12чи; Значит высота тростника, а так же его расстояние от корня до кромки берега будет (h+4)чи; В итоге имеем прямоугольный треугольник, где гипотенузой будет длина всего тростника до кромки (h+4),а катетами -глубина h и расстояние от середины до берега 12чи; По теореме Пифагора решаем:(h+4)^2-h^2=12^2; Получим h^2+8h+16 -h^2=144; 8h=128; h=16; Высота воды 16, значит высота тростника 16+4=20чи; Ответ:16чи; 20чи;


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili