
Середину довшої сторони прямокутної трапеції сполучили з вершинами трапеції. При цьому трапеція
розділилася на три рівнобедрених трикутники. Знайдіть величину гострого кута трапеції. Очень нужно! Помогите пожалуйста!

Ответы на вопрос

Ответ:
Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< BCM = 180o - 2?, < ADC = 180o - < BCM = 180o-(180o - 2?)=2?,
< BMN = < MBC = ?, < AMB = 2 < BMN = 2?,
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
Ответ: 72o .



Позначимо дані на малюнку для більшої ясності:
css A --------------- B
/ \
/ \
/ \
D------------------------C
ABCD - трапеція, AD і BC - рівні більші сторони трикутників, EF - середня лінія трапеції (з'єднання середин AB та CD).
Так як EF є середньою лінією трикутників, то точка E - середина BC (E - середина відрізка BC), точка F - середина AD (F - середина відрізка AD).
Оскільки AD і BC - рівні сторони трикутників, то трикутники AEF і CEF також є рівнобедреними. Це означає, що кути EAF і ECF є рівними (так як вони є вершинними кутами рівнобедрених трикутників).
Отже, кут DAC (або DAF) дорівнює половині суми кутів EAF і ECF.
Якщо ми позначимо кут EAF (або ECF) як α, то маємо:
DAC = 0.5 * (α + α) = α
З іншого боку, так як трикутник AEF є рівнобедреним, то кут AFE також дорівнює α.
Тепер ми маємо два кути в трикутнику ADC: ACD і ADC. Знаючи, що сума кутів в трикутнику дорівнює 180°, ми можемо записати:
ACD + ADC + DAC = 180°
Підставляючи значення DAC (яке дорівнює α), отримуємо:
2α + α = 180°
Звідси ми можемо знайти α:
3α = 180°
α = 60°
Отже, величина гострого кута трапеції дорівнює 60°.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili