
3. Знайдіть кути CiD чотирикутника CDNM, вписаного вколо, якщо N=75°, M=120°ОЧЕНЬ СРОЧНО


Ответы на вопрос

Ответ:
Кут Д=60°, Кут С=105°
Объяснение:
за свойством противоположные Куты в сумме дают 180°. значит, чтобы найти неизвестный, нужно от 180 отнят известный и найдем ему противоположный



Для знаходження кутів чотирикутника CDNM, вписаного в коло, нам потрібно використовувати властивості вписаних кутів та центральних кутів в колах.
Для початку, ми знаємо, що кожен центральний кут в колі дорівнює подвійному куту відповідного вписаного кута. Отже, кут CND дорівнює 2 * N, тобто 2 * 75° = 150°.
Також, кути, що опираються на одну і ту ж дугу, дорівнюють один одному. Отже, кут CDM дорівнює куту CND, тобто 150°.
Тепер нам залишилося знайти два кути CiD. Всі кути в чотирикутнику CDNM разом дорівнюють 360°. Таким чином, ми можемо знайти суму кутів CiD:
360° = CiD + CiD + CDM + CND
360° = 2 * CiD + 150° + 150°
360° = 2 * CiD + 300°
2 * CiD = 360° - 300°
2 * CiD = 60°
Тепер поділимо обидві сторони на 2, щоб знайти кут CiD:
CiD = 60° / 2 = 30°
Отже, кути CiD в чотирикутнику CDNM дорівнюють 30° кожен.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili