Вопрос задан 28.06.2023 в 00:10. Предмет Геометрия. Спрашивает Шарапова Азалия.

У рівнобедреному трикутнику до основи AC проведеною до основи AC медіану BK, доведіть що ABK=CBK​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Dubelt Diana.

Дано:

ABC - рівнобедрений трикутник

AB = BC

BK - медіана

Довести, що:

ΔABK = ΔCKB

Доведення:

З ознаки медіани випливає, що:

AK = KC тоді так, як з умови трикутник рівнобедрений, а BK - спільна сторона в даних трикутниках, то

AB = BC, AK = KC, KB = KB

ΔABK = ΔCKB

Рисунок у прикріпленому файлі


0 0
Отвечает Полипонцева Полина.

Ответ:Треугольники равны по третьему признаку равенства треугольников-если три стороны одного треугольника равны трём сторонам другого треугольника,то Треугольники равны

АВ=ВС как боковые стороны равнобедренного треугольника

АК=КС,т к медиана ВК опущенная из вершины треугольника на основание поделила АС пополам

ВК-общая сторона

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доведення ABK = CBK в рівнобедреному трикутнику ABC з медіаною BK можна використовувати властивості рівнобедреного трикутника та властивості медіани. Давайте подивимося на цей процес крок за кроком:

  1. Ми знаємо, що в рівнобедреному трикутнику ABC бічна сторона AB дорівнює бічній стороні CB (AB = CB), оскільки це одна з властивостей рівнобедреного трикутника.

  2. Медіана BK ділить основу AC на дві рівні частини. Тобто, AC рівно поділена на два рівні відрізки: AK і KC.

  3. Також відомо, що медіана BK від точки B до середини основи AC є перпендикуляром до AC. Отже, ми маємо прямий кут у точці K.

  4. Тепер розглянемо трикутники ABK і CBK. Вони мають спільну сторону BK, а також спільну сторону AB = CB (властивість рівнобедреного трикутника). Ми також знаємо, що кут BKA і кут BKC є прямими кутами (з попереднього кроку).

  5. З цього випливає, що трикутники ABK і CBK є подібними, оскільки вони мають спільний кут B і прямий кут, а також спільну сторону BK. З подібності трикутників ми можемо записати наступне:

    ABK / CBK = AK / KC

  6. Оскільки медіана BK поділяє основу AC на дві рівні частини, AK = KC. Тобто, AK / KC = 1.

  7. Таким чином, ми отримуємо ABK / CBK = 1, що означає, що ABK дорівнює CBK: ABK = CBK.

Отже, ми довели, що в рівнобедреному трикутнику ABC з медіаною BK, кут ABK дорівнює куту CBK: ABK = CBK.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос