
Вопрос задан 06.07.2018 в 04:23.
Предмет Геометрия.
Спрашивает Гладков Сергей.
основанием прямой призмы являются ромб с острым углом 30 градусов. диагональ боковой грани равна 8
см и образует с плоскосью основания угол 60 градусов.найдите площадь полной поверхности призмы

Ответы на вопрос

Отвечает Гречанник Влад.
Половина диагонали ромба, против угла в 30 градусов = 8*1/2=4.Значит, вся диагональ равна 8.Значит по теореме косинусов в треугольнике в ромбе где x-сторона ромба 2x^2-2x^2*cos 30=64
x^2*(1-cos 30)=32
x^2=32/(1-cos 30)(1)
Так как призма прямая а в основании ромб , то площади боковых граней равны, тогда
S(призмы)=2S(ромба)+4S(грани боковой)=2(x^2)*sin 30+4*x*sqrt(64-[x^2]).А икс ты знаешь из (1). cos 30=sqrt(3)/2. sqrt-корень


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili