Вопрос задан 05.07.2018 в 13:49. Предмет Геометрия. Спрашивает Лебедев Павел.

Диагонали параллелограмма ABCD пересекаются в точке О.Сумма площадей треугольников AOB и COD равна

5.Найдите площадь параллелограмма
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Расулов Руслан.


Параллелограмм АВСД, диагонали параллелограмма в точке пересечения делятся пополам, ВО=ОД, АО=ОС, треугольник АОВ=треугольник СОД, площадь АОВ=(площадь АОВ+площадь СОД)/2=5/2=2,5, треугольник АВС, ВО-медиана и делит треугольник АВС на 2 равновеликих треугольника, площадь АВО=площадьВСО=2,5, треугольник АВД, АО медиана, площадь АОВ=площадь АОД, диагонали параллелограмма делят его на 4 равновеликих треугольника, площадь АВСД=4*площадьАОВ=4*2,5=10

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос