
Радиусы оснований усеченных конусов 6 см и 2 см, а создатель 5 см. Найдите площадь поверхности
усеченного конуса

Ответы на вопрос

Ответ:
S=80π
Объяснение:




Для вычисления площади поверхности усеченного конуса нужно сложить площади двух оснований и площадь боковой поверхности. Формула для вычисления площади боковой поверхности усеченного конуса:
S = π(R + r) * l,
где:
- S - площадь боковой поверхности усеченного конуса,
- π - число "пи", приближенно равное 3.14159,
- R - радиус большего основания (6 см),
- r - радиус меньшего основания (2 см),
- l - образующая усеченного конуса.
Образующая (l) может быть найдена с помощью теоремы Пифагора, где a и b - это радиусы оснований, а c - создатель (высота) усеченного конуса:
c^2 = (R - r)^2 + a^2,
c^2 = (6 см - 2 см)^2 + 5 см^2, c^2 = 16 см^2 + 25 см^2, c^2 = 41 см^2.
Теперь найдем c:
c = √41 см ≈ 6.40 см.
Теперь мы можем вычислить площадь боковой поверхности:
S = π(6 см + 2 см) * 6.40 см, S = π(8 см) * 6.40 см, S ≈ 25.13 см^2.
Теперь добавим к этой площади площади двух оснований (кругов):
Площадь большего основания = π * (6 см)^2 ≈ 113.10 см^2, Площадь меньшего основания = π * (2 см)^2 ≈ 12.57 см^2.
Теперь сложим все три площади:
Площадь поверхности усеченного конуса ≈ 25.13 см^2 + 113.10 см^2 + 12.57 см^2 ≈ 150.80 см^2.
Площадь поверхности усеченного конуса составляет приблизительно 150.80 квадратных сантиметров.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili