
C (6;-2) и D (24;2) Составить уравнение прямой, проходящей через эти точки


Ответы на вопрос

Ответ:
решение смотри на фотографии
Объяснение:




Для того чтобы составить уравнение прямой, проходящей через две заданные точки C(6,-2) и D(24,2), вы можете воспользоваться уравнением прямой в общем виде: y = mx + b, где m - это коэффициент наклона (slope) прямой, а b - это коэффициент смещения по вертикали (y-intercept).
Начнем с вычисления коэффициента наклона m. Коэффициент наклона можно найти, используя разницу в y-координатах и разницу в x-координатах между точками C и D:
m = (y2 - y1) / (x2 - x1) m = (2 - (-2)) / (24 - 6) m = 4 / 18 m = 2/9
Теперь, когда у нас есть коэффициент наклона m, мы можем использовать любую из точек (давайте выберем C(6,-2)) и подставить её координаты, чтобы найти коэффициент смещения b:
-2 = (2/9) * 6 + b -2 = 12/9 + b
Теперь выразим b:
b = -2 - 12/9 b = -2 - 4/3 b = (-6/3) - (4/3) b = -10/3
Теперь у нас есть значение m и b. Мы можем записать уравнение прямой:
y = (2/9)x - 10/3
Таким образом, уравнение прямой, проходящей через точки C(6,-2) и D(24,2), будет:
y = (2/9)x - 10/3


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili