Вопрос задан 25.06.2023 в 09:24. Предмет Геометрия. Спрашивает Соколова Ульяна.

Срочно помогите прошу 1. Стороны прямоугольника равны 15 см и 6 см. А) Найдите ширину

прямоугольника, равновеликому данному, если его длина равна 18 см.Б) В каждом из этих треугольников провели диагональ. Будут ли они равносоставленными? Ответ обоснуйте.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матюхин Семён.

Объяснение:

A) Равновеликие фигуры равны по площади

S=a1×b1

a1=15 cм

b1=6 cм

S=15×6=90 см^2

а2=18 см

S=a2×b2

90=18×b2

b2=90:18

b2=5

Ширина =5 см

Б)

По теореме любые два равновеликих многоугольника равносоставленные, но в нашем случае есть и другое условие: прямоугольники разделены на два треугольника диагональю. Полученные треугольники попарно не равны, след-но они не равносоставленные

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с каждым вопросом поочередно.

А) Найдите ширину прямоугольника, равновеликому данному, если его длина равна 18 см.

Для начала, определим площадь исходного прямоугольника: Площадь=длина×ширина=15см×6см=90см2\text{Площадь} = \text{длина} \times \text{ширина} = 15 \, \text{см} \times 6 \, \text{см} = 90 \, \text{см}^2

Мы знаем, что площадь прямоугольника с новой шириной (назовем её ww) и длиной 18 см также равна 90 см²: 90см2=18см×w90 \, \text{см}^2 = 18 \, \text{см} \times w w=90см218см=5смw = \frac{90 \, \text{см}^2}{18 \, \text{см}} = 5 \, \text{см}

Таким образом, ширина прямоугольника равного площади, с длиной 18 см, составит 5 см.

Б) В каждом из этих треугольников провели диагональ. Будут ли они равносоставленными? Ответ обоснуйте.

Чтобы определить, будут ли диагонали равносоставленными, давайте посмотрим на их длины в исходном прямоугольнике и в новом прямоугольнике с длиной 18 см.

В исходном прямоугольнике длины диагоналей можно найти с помощью теоремы Пифагора: Длина первой диагонали (15 см, 6 см)=152+6216.15см\text{Длина первой диагонали (15 см, 6 см)} = \sqrt{15^2 + 6^2} \approx 16.15 \, \text{см} Длина второй диагонали (6 см, 15 см)=62+15216.15см\text{Длина второй диагонали (6 см, 15 см)} = \sqrt{6^2 + 15^2} \approx 16.15 \, \text{см}

В новом прямоугольнике с длиной 18 см: Длина первой диагонали (18 см, 5 см)=182+5218.87см\text{Длина первой диагонали (18 см, 5 см)} = \sqrt{18^2 + 5^2} \approx 18.87 \, \text{см} Длина второй диагонали (5 см, 18 см)=52+18218.87см\text{Длина второй диагонали (5 см, 18 см)} = \sqrt{5^2 + 18^2} \approx 18.87 \, \text{см}

Обратим внимание, что длины диагоналей в исходном прямоугольнике и новом прямоугольнике с длиной 18 см близки, но они не совпадают.

Таким образом, диагонали этих прямоугольников не будут равносоставленными.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос