Вопрос задан 25.06.2023 в 03:12. Предмет Геометрия. Спрашивает Сурган Карина.

відношення сторони правильного шестикутника до, вписаного в коло, до сторони квадрата, описаного

навколо цього ж кола
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нещеретов Макс.

Ответ:

1 : 2 = 1/2 = 0,5

Объяснение:

1. Так как центральные углы вписанного шестиугольника, образованные радиусами, соединяющими вершины шестиугольника с центром описанной окружности,  равны 60°, а стороны треугольников, соединяющих вершины шестиугольника с центром окружности, равны радиусу окружности, то все 6 шестиугольников - равносторонние, и их стороны равны радиусу описанной окружности R.

2. Сторона квадрата, описанного около той же окружности, равна её диаметру, то есть 2R, так как окружность касается всех сторон квадрата.

3. Отношение стороны правильного шестиугольника, вписанного в окружность, к стороне квадрата, описанного около той же окружности, равно:

R : 2R = 1 : 2 = 1/2 = 0,5

Ответ: 1 : 2 = 1/2 = 0,5

 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Відношення сторін правильного шестикутника до сторін квадрата, описаного навколо цього ж кола, можна знайти за допомогою геометричних співвідношень.

Правильний шестикутник можна розділити на 6 рівних рівних трикутників, описаних навколо кола. Кожен з цих трикутників є рівнобічним, оскільки у правильному шестикутнику всі сторони і кути однакові. Одна зі сторін трикутника є радіусом кола, інша сторона - стороною шестикутника, а гіпотенуза трикутника - стороною квадрата, описаного навколо цього кола.

За теоремою Піфагора для трикутника зі стороною a (сторона шестикутника), стороною b (радіус кола) і гіпотенузою c (сторона квадрата):

c² = a² + b²

Позначимо a як сторону шестикутника і b як радіус кола. Тоді c буде стороною квадрата, описаного навколо цього кола.

Ми знаємо, що в правильному шестикутнику всі сторони рівні між собою, отже a = b.

Замінюючи a на b у рівнянні, маємо:

c² = b² + b² c² = 2b²

Тепер можна виразити відношення c до b:

c/b = √2

Отже, відношення сторін квадрата, описаного навколо кола, до сторін правильного шестикутника, вписаного в це коло, дорівнює √2 або близько 1.4142 (заокруглено до чотирьох знаків після коми).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос