Вопрос задан 24.06.2023 в 09:06. Предмет Геометрия. Спрашивает Шестак Александр.

сторона квадрата равна 6√3 см.Найдите стороны равновеликого ему параллелограмма, если его высота

равна 6см и 12см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Геращенко Алина.

6см:12см=2см

6×3=18см

18:2=9см

ответ:9см

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи давайте разберемся сначала с тем, что такое равновеликий параллелограмм.

Равновеликий параллелограмм - это параллелограмм, у которого площадь равна площади данного квадрата. Площадь квадрата можно найти, умножив длину одной его стороны на саму себя. В данном случае, сторона квадрата равна 636\sqrt{3} см, поэтому его площадь равна (63)2=108(6\sqrt{3})^2 = 108 см².

Для нахождения сторон равновеликого параллелограмма мы можем воспользоваться формулой для площади параллелограмма:

Площадь параллелограмма=Длина основания×Высота\text{Площадь параллелограмма} = \text{Длина основания} \times \text{Высота}

По условию, у нас есть две высоты: 6 см и 12 см. Давайте рассмотрим оба варианта:

  1. Для высоты 6 см: Длина основания=Площадь параллелограммаВысота=108см26см=18см\text{Длина основания} = \frac{\text{Площадь параллелограмма}}{\text{Высота}} = \frac{108 \, \text{см}^2}{6 \, \text{см}} = 18 \, \text{см}

  2. Для высоты 12 см: Длина основания=108см212см=9см\text{Длина основания} = \frac{108 \, \text{см}^2}{12 \, \text{см}} = 9 \, \text{см}

Таким образом, существуют два равновеликих параллелограмма с высотами 6 см и 12 см, и их основания равны 18 см и 9 см соответственно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос