Вопрос задан 22.06.2023 в 04:08. Предмет Геометрия. Спрашивает Софрыгина Анастасия.

Чому дорівнюють сторони прямокутника, якщо його периметр - 50 см, а площа - 66 см2? Менша сторона

- см. Велика сторона - см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дулесов Егор.

Ответ:

3 см, 22 см

Объяснение:

3*22=66

3*2+22*2=50

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі нам потрібно знайти дві невідомі: довжину меншої сторони (позначимо її як "a") і довжину більшої сторони (позначимо її як "b").

Ми маємо дві інформаційні величини:

  1. Периметр прямокутника (P) = 50 см.
  2. Площа прямокутника (S) = 66 см².

Знаючи формули для периметра і площі прямокутника, ми можемо записати наступні рівняння:

  1. P = 2a + 2b
  2. S = ab

Ми хочемо знайти значення "a" і "b". Можемо використовувати систему рівнянь для цього.

З рівняння периметра ми можемо виразити "a" через "b":

2a = P - 2b a = (P - 2b) / 2

Тепер підставимо це вираз для "a" в рівняння площі:

S = ((P - 2b) / 2) * b

Замість P підставимо 50 і розв'яжемо рівняння:

66 = ((50 - 2b) / 2) * b

Спростимо рівняння:

132 = 50b - 2b²

Тепер перетворимо його в квадратне рівняння:

2b² - 50b + 132 = 0

Розділимо обидві сторони на 2:

b² - 25b + 66 = 0

Тепер ми можемо використовувати квадратне рівняння для знаходження "b". Використовуючи коефіцієнти "a", "b" і "c" у рівнянні:

a = 1 b = -25 c = 66

Використовуючи квадратну формулу, ми отримуємо два значення "b":

b1 = (-b + √(b² - 4ac)) / (2a) b2 = (-b - √(b² - 4ac)) / (2a)

Підставляючи значення коефіцієнтів, отримаємо:

b1 = (25 + √(25² - 4166)) / (21) b2 = (25 - √(25² - 4166)) / (21)

Розрахуємо значення "b":

b1 = (25 + √(625 - 264)) / 2 b1 = (25 + √361) / 2 b1 = (25 + 19) / 2 b1 = 44 / 2 b1 = 22

b2 = (25 - √(625 - 264)) / 2 b2 = (25 - √361) / 2 b2 = (25 - 19) / 2 b2 = 6 / 2 b2 = 3

Отже, ми отримали два можливих значення для "b": 22 см і 3 см. І тепер ми можемо знайти відповідні значення "a":

Для b = 22 см: a = (50 - 2*22) / 2 a = (50 - 44) / 2 a = 6 / 2 a = 3 см

Для b = 3 см: a = (50 - 2*3) / 2 a = (50 - 6) / 2 a = 44 / 2 a = 22 см

Отже, в першому випадку менша сторона дорівнює 3 см, а більша сторона дорівнює 22 см. У другому випадку менша сторона дорівнює 22 см, а більша сторона дорівнює 3 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос