Вопрос задан 02.07.2018 в 22:15. Предмет Геометрия. Спрашивает Исакова Даша.

Радиус окружности с центром в точке O равен 82, длина хорды AB равна 36 Найдите расстояние от хорды

AB до параллельной ей касательной k.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мовчан Артём.

Достроим радиус ОМ до диаметра МК
МК перпендикулярен хорде АВ, т.к. ОМ перпендикулярен касательной, которая параллельна АВ. (св-во радиуса, проведенного в т. касания)
По свойству хорде, перпендикулярной к диаметру: AV=VB=36/2=18
Проведем радиус в т.А 
Из прямоуг. тр-ка АОV:
по т. Пифагора: OV²=AO² - AV²
OV²=6724-324=6400
OV=80
Отрезок MV-искомое расстояние- равен ОV+OM=80+82=162
Ответ: 162


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос