Вопрос задан 20.06.2023 в 14:50. Предмет Геометрия. Спрашивает Горбачёв Михаил.

Стороны параллелограмма соотносятся как 2:5, а периметр равен 134,4 см. Вычисли стороны

параллелограмма. Большая сторона равна:а меньшая равна: ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Билалов Булат.

Ответ:

Наибольшая равна 19,2 см

Наименьшая равна 48 см


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть \( a \) - это длина большей стороны параллелограмма, а \( b \) - длина меньшей стороны. Тогда, исходя из условия, мы можем записать:

\[ a : b = 2 : 5 \]

Это означает, что отношение длины большей стороны к длине меньшей стороны равно 2 к 5.

По определению периметра параллелограмма:

\[ P = 2(a + b) \]

Теперь мы знаем, что периметр равен 134,4 см, поэтому мы можем записать:

\[ 134,4 = 2(a + b) \]

Разделим обе стороны на 2, чтобы выразить \( a + b \):

\[ a + b = \frac{134,4}{2} \]

\[ a + b = 67,2 \]

Теперь у нас есть система из двух уравнений:

\[ a : b = 2 : 5 \] \[ a + b = 67,2 \]

Мы можем решить эту систему. Умножим первое уравнение на 5, чтобы избавиться от дроби:

\[ 5a = 2b \]

Теперь сложим это с вторым уравнением:

\[ 5a + a + b = 67,2 \]

\[ 6a + b = 67,2 \]

Теперь подставим \( 5a \) вместо \( b \):

\[ 6a + 5a = 67,2 \]

\[ 11a = 67,2 \]

\[ a = \frac{67,2}{11} \]

Теперь найдем \( b \) с использованием уравнения \( a + b = 67,2 \):

\[ \frac{67,2}{11} + b = 67,2 \]

\[ b = 67,2 - \frac{67,2}{11} \]

\[ b = \frac{67,2 \cdot 10}{11} - \frac{67,2}{11} \]

\[ b = \frac{672 - 67,2}{11} \]

\[ b = \frac{604,8}{11} \]

Таким образом, мы нашли значения для \( a \) и \( b \). Теперь можем выразить их в виде отношения:

\[ a : b = \frac{67,2}{11} : \frac{604,8}{11} \]

\[ a : b = 6,1 : 54,98 \]

Так что большая сторона примерно равна 6,1 см, а меньшая сторона примерно равна 54,98 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос