
Вопрос задан 20.06.2023 в 10:52.
Предмет Геометрия.
Спрашивает Дроб Миша.
Срочно! Сторони прямокутника відносяться як 2 : 5. Знайти сторони прямокутника та його площу, якщо
його периметр дорівнює 42 см

Ответы на вопрос

Отвечает Rudenko Egor.
Нехай k коефіцієнт пропорційності , тоді : сторона AB = 5 k , AD = 2k
P = 2(AB+AD)
2 (5k+2k)=42
7k =21
k=3
AB = 5*3
AB=15(см)
CD=AB=15(см)
AD=2*3
AD=6 (см)
BC=AD=6 (см)
S = AB*AD = 15*6
S =80 ( см^2)
Відповідь сторони AB і CD = 15 см , AD і BC = 6см , S = 80 см^2



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Нехай одна сторона прямокутника дорівнює 2x, а інша - 5x. Тоді периметр прямокутника дорівнює 2*(2x + 5x) = 42. Розв'язавши це рівняння, отримаємо x = 3. Тоді сторони прямокутника дорівнюють 2*3 = 6 см та 5*3 = 15 см. Щоб знайти площу прямокутника, домножимо його сторони: 6 см * 15 см = 90 см². Отже, сторони прямокутника дорівнюють 6 см та 15 см, а його площа - 90 см².


Похожие вопросы

Геометрия 52
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili