Вопрос задан 19.06.2023 в 20:39. Предмет Геометрия. Спрашивает Гагарина Дарья.

Составить уравнение окружности радиуса r = 5 и касающейся прямой 2х - у + 4 = 0 в точке (-1, 2).

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Максютова Элина.

Так как окружность может касаться прямой с двух сторон, то заданных окружностей будет 2.

Центры окружностей лежат на перпендикуляре к прямой 2х - у + 4 в точке касания А(-1; 2).

В уравнении перпендикуляра к прямой в общем виде Ах + Ву + С = 0 коэффициенты А и В становятся (-В) и А (чтобы произведение равнялось 0).

Уравнение прямой с центрами окружностей: х + 2у + С = 0.

Для определения слагаемого С подставим координаты токи А.

-1 + 2*2 + С = 0, отсюда С - - 4 + 1 = -3.

Уравнение прямой центров х + 2у - 3 = 0.  

Координаты центров найдём, решив систему из уравнения прямой центров и уравнения окружности с центром в точке касания и радиусом 5.

{х + 2у - 3 = 0, отсюда х = 3 - 2у подставим во второе уравнение.

{(x + 1)² + (y - 2)² = 5². Раскроем скобки.

х² + 2х +1+ у² - 4у + 4 = 25. Подставляем замену.

(3 - 2у)² + 2*(3 - 2у) +1 + у² - 4у + 4 = 25,

9 - 12у + 4у² - 6 - 4у + 1 + у² - 4у = 25. Приводим подобные.

5у² - 20у - 5 = 0, сократим на 5:

у² - 4у - 1 = 0.  D = 16 +4 = 20, √D = ±√20 = ±2√5.

y1 = (4 + 2√5)/2 = 2 + √5,

y2 = (4 - 2√5)/2 = 2 - √5.

Находим координаты по х = 3 - 2у.

х1 = 3 - 2*(2 + √5) = 3 - 4 - 2√5 = -1 - 2√5.

х2 = 3 - 2*(2 - √5) = 3 - 4 - 2√5 = -1 + 2√5.

Получили координаты центров окружностей:

О1((-1 - 2√5); (2 + √5))  и О2((-1 + 2√5); (2 - √5)).

Теперь можно составить уравнения заданных окружностей.

(x - (-1 - 2√5))² + (y - (2 +√5))² = 5² или, раскрыв скобки,

(x + 1 + 2√5))² + (y - 2 - √5))² = 5² с центром в точке О1.

(x - (-1 + 2√5))² + (y - (2 -√5))² = 5² или, раскрыв скобки,

(x + 1 - 2√5))² + (y - 2 + √5))² = 5² с центром в точке О2.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Уравнение окружности с радиусом r и центром в точке (a, b) имеет вид: (x - a)^2 + (y - b)^2 = r^2

Так как окружность касается прямой 2x - y + 4 = 0, то расстояние от центра окружности до этой прямой равно радиусу окружности.

Расстояние от точки (a, b) до прямой Ax + By + C = 0 вычисляется по формуле: d = |Ax + By + C| / √(A^2 + B^2)

Таким образом, уравнение окружности с радиусом r = 5 и касающейся прямой 2x - y + 4 = 0 в точке (-1, 2) имеет вид: (x + 1)^2 + (y - 2)^2 = 5^2

Или после раскрытия скобок: (x + 1)^2 + (y - 2)^2 = 25

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос