Вопрос задан 30.06.2018 в 13:07. Предмет Геометрия. Спрашивает Евдокимова Элеонора.

Срочно: Сторона ромба равна 10 см, острый угол 30 градусам. Найдите радиус вписанной в ромб

окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кравец Соня.

Чертим ромб АВСD, его стороны по 10см, угол А=30. Диагонали его пересекутся под прямым углом в точке О и этой точкой поделятся пополам. Из точки О проведем перпендикуляр ОН к стороне АВ. ОН и есть радиус вписанной в ромб окружности. Найдем диагональ ромба ВD по теореме косинусов:

BD^2=AB^2+AD^2-2*AB*AD*cosA=100+100-2*10*10*cos30=200-100*√3=27

BD=5,2см   ВО=5,2/2=2,6см

По теореме Пифагора  АО^2=АВ^2-BO^2=100-6,76=93,24

Сейчас работаем с треугольником АОВ. Его площадь можно найти двумя способами:

S=(A0*BO)/2=9,6*2,6/2=12,5

S=(AB*OH)/2.  Отсюда выразим ОН:

ОН=2S/АВ=25/10=2,5см.

Ответ: 2,5см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос