Вопрос задан 14.06.2023 в 09:49. Предмет Геометрия. Спрашивает Буйницкий Константин.

8. Выберите верное утверждение. 1.Если три стороны одного треугольника соответственно равны тр

сторонам другого треугольника, то такие треугольники равны 2.Каждая сторона треугольника меньше суммы двух других сторон 3.Если две стороны и угол одного треугольника соответствен равны двум сторонам и углу другого треугольника, то так треугольники равны 4.Если три угла одного треугольника соответственно равны тр углам другого треугольника, то такие треугольники равны 9. В треугольнике Авс угол С равен 90°, угол А равен 60°, АС= 8 см. Найдите AB. Ответ.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волощук Захар.

Ответ:

ну 4 вроде.

Объяснение:

По свойству угла 30 градусов

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения задачи нам понадобится применить теорему синусов, которая гласит:

a/sin(A) = b/sin(B) = c/sin(C)

Где a, b и c - стороны треугольника, A, B и C - противолежащие углы.

В данном случае, у нас даны два угла и одна сторона треугольника АВС:

Угол А = 60° Угол С = 90° Сторона АС = 8 см

Угол В можно найти, используя свойство треугольника, сумма углов которого равна 180°: Угол В = 180° - угол А - угол С Угол В = 180° - 60° - 90° Угол В = 30°

Теперь, используя теорему синусов, можем найти сторону АВ: AB/sin(60°) = 8/sin(30°)

Переставим уравнение и решим его относительно AB: AB = (8 * sin(60°)) / sin(30°) AB ≈ 13.856 см

Таким образом, AB ≈ 13.856 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос