
В треугольнике ABC точка D лежит на AC причем AO/DC=2/3 площадь треугольника ABDC равна 7,5 Найдите
S триуг-а СРОЧНОО

Ответы на вопрос

Ответ:
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
1. Пусть АМ = х, тогда СМ = 3 - х.
(3 - x) : x = 3 : 2
6 - 2x = 3x
5x = 6
x = 1,2
AM = 1,2 см, СМ = 1,8 см
2. Так как MN < NK, то MP < PK.
Пусть МР = х, тогда РК = х + 0,5
4 : x = 5 : (x + 0,5)
5x = 4x + 2
x = 2
МР =2 см, РК = 2,5 см
3. DE + EP = Pdep - DP = 21 - 7 = 14 см
Пусть DE = x, тогда ЕР = 14 - х
x : 3 = (14 - x) : 4
4x = 42 - 3x
7x = 42
x = 6
DE = 6 см, ЕР = 8 см
4. Пусть АВ = х, тогда ВС = х + 3.
x : 2 = (x + 3) : 3
3x = 2x + 6
x = 6
АВ = 6 см, ВС = 9 см
6. В условии опечатка: надо найти длины сторон CD и DE.
DF - диагональ ромба, а диагонали ромба лежат на биссектрисах его углов, значит DF - биссектриса треугольника.
CD + DE = Pcde - CE = 55 - 20 = 35 см
Пусть CD = х, тогда DE = 35 - х
x : 8 = (35 - x) : 12
12x = 280 - 8x
20x = 280
x = 14
CD = 14 см, DE = 21 см
7. ΔАВС, ∠С = 90°, АМ - биссектриса.
Пусть АС = х, тогда по теореме Пифагора АВ = √(х² + 81).
x : 4 = √(х² + 81) : 5
5x = 4√(х² + 81)
25x² = 16x² + 81 · 16
9x² = 81 · 16
x² = 9 · 16
x = 3 · 4 = 12
АС = 12 см
Sabc = AC · CB / 2 = 12 · 9 = 54 см²
8. Так как точка О равноудалена от катетов, СО - диагональ квадрата, а диагонали квадрата лежат на биссектрисах его углов. Значит СО - биссектриса треугольника.
а : 40 = b : 30
b = 30a / 40 = 3a/4
По теореме Пифагора:
70² = a² + 9a²/16
25a²/16 = 4900
a² = 4900 · 16 / 25 = 196 · 16
a = 14 · 4 = 56
CB = 56 см
АС = 3 · 56 / 4 = 3 · 14 = 42 см
Sabc = CB · AC / 2 = 56 · 42 / 2 = 1176 см²
9. ΔАВС: ∠В = 60°, ∠С = 40°, ⇒ ∠А = 80°.
О - точка пересечения биссектрис.
∠ОАС + ∠ОСА = (∠А + ∠С)/2 = (80° + 40°)/2 = 60°
Из ΔОАС ∠АОС = 180° - (∠ОАС + ∠ОСА) = 180° - 60° = 120°
10. ΔАВС с прямым углом С, СМ - биссектриса.
АС = АВ/2 = 2 см как катет, лежащий напротив угла в 30°.
По теореме Пифагора
ВС = √(АВ² - АС²) = √(16 - 4) = √12 = 2√3 см
Пусть АМ = х, тогда МВ = 4 - х.
x : 2 = (4 - x) : (2√3)
2√3x = 8 - 2x
2x(√3 + 1) = 8
x = 4 / (√3 + 1) = 4(√3 - 1) / (3 - 1) = 2(√3 - 1)
AM = 2(√3 - 1) см
МВ = 4 - (2√3 - 2) = 6 - 2√3 = 2√3(√3 - 1) см
11. ΔАВС: ∠С = 90°, ∠А = 60°, ⇒ ∠В = 30°, тогда
АВ = 2АС = 2√3 см по свойству катета, лежащего напротив угла в 30°.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(12 - 3) = √9 = 3 см
СМ - биссектриса.
Пусть АМ = х, МВ = 2√3 - х.
x : √3 = (2√3 - x) : 3
3x = 6 - √3x
x(3 + √3) = 6
x = 6 / (3 + √3) = 6(3 - √3) /(9 - 3) = 3 - √3 = √3(√3 - 1)
AM = √3(√3 - 1) см
МВ = 2√3 - 3 + √3 = 3√3 - 3 = 3(√3 - 1) см



Для решения этой задачи воспользуемся свойством, что отношение площадей двух треугольников, имеющих общую высоту и лежащих на одной и той же базе, равно отношению длин этих баз.
Пусть S1 - площадь треугольника ABO, а S2 - площадь треугольника CDO.
Так как AO/DC = 2/3, то площадь треугольника ADO составляет 2/3 площади треугольника CDO.
Тогда площадь треугольника ABC равна сумме площадей треугольников ABO и ADO, то есть S = S1 + S2.
Мы знаем, что площадь треугольника ABDC равна 7,5, то есть S = 7,5.
Поэтому S1 + S2 = 7,5.
Так как площадь треугольника равна половине произведения длины базы на высоту, можно записать:
S1 = (1/2) * AB * h1,
S2 = (1/2) * CD * h2,
где h1 и h2 - высоты треугольников ABO и CDO соответственно.
Так как эти треугольники имеют общую высоту (прямую AO), то отношение высот равно отношению площадей:
h1 / h2 = S1 / S2.
Подставим выражения для площадей:
(1/2) * AB * h1 / ((1/2) * CD * h2) = S1 / S2.
Сократим на (1/2):
AB * h1 / (CD * h2) = S1 / S2.
Так как AB и CD - это одна и та же база AC, можно записать:
h1 / h2 = S1 / S2 = 7,5 / 7,5 = 1.
То есть высоты h1 и h2 равны.
Так как треугольники ABO и CDO имеют одинаковые высоты и различные базы, их площади пропорциональны длинам их баз.
Пусть x - длина базы AB, тогда длина базы CD равна 3x/2.
Тогда площадь треугольника ABO равна:
S1 = (1/2) * x * h1 = (1/2) * x * h2.
Площадь треугольника CDO равна:
S2 = (1/2) * (3x/2) * h2 = (3/4) * x * h2.
Так как S1 + S2 = 7,5, то можно записать:
(1/2) * x * h


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili