
Вопрос задан 22.06.2018 в 11:45.
Предмет Геометрия.
Спрашивает Силантьева Алеся.
Докажите, что если две окружности касаются, то точка касания и центры этих окружностей лежат на
одной прямой. Помогите пожалуйста!!

Ответы на вопрос

Отвечает Малая Леся.
Доказательство методом дополнительного построения
1. Проведем касательную ПРЯМУЮ через точку касания окружностей
2. КАСАТЕЛЬНАЯ перпендикулярна радиусу первой окружности и радиусу второй окружности.
3. Два отрезка (радиусы) перпендикулярные ОДНОЙ прямой (касательной) в одной точке, т.е. прилежат одной прямой. ⇒ три точки: центры окружностей и точка касания окружностей, принадлежат одной прямой. ч.т.д.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili