Вопрос задан 19.06.2018 в 22:47. Предмет Геометрия. Спрашивает Макуева Жанна.

В треугольнике АВС проведена биссектриса AL, угол ALC равен 75 градусов, угол АВС равен 35

градусов. Найдите угол АCВ. Ответ дайте в градусах.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Косякова Валерия.

∠ALB = 180° - ∠ALC = 180° - 75° = 105° - по свойству смежных углов.
∠LAB = 180° - ∠ALB - ∠ABC = 180° - 105° - 35° = 40°.
∠BAL = ∠CAL = 1/2∠BAC, т.к. AL - биссектриса. Тогда ∠BAC = 2∠BAL = 2•40° = 80°
∠ACB = 180° - ∠ABC - ∠BAC = 180° - 80° - 35° = 65°.
Ответ: 65°.

0 0
Отвечает Тикото Владислава.

Решение:
Угол ALC + угол ABL= 180°. Угол ABL= 180° - 75° = 105°. Рассмотрим треугольник ABL: угол ABL =35°, угол ALB = 105°. Тогда угол BAL = 180° - (105°+35°) = 40°. Поскольку AL - бисектриса, то угол BAL = углу LAC = 40°. Рассмотрим треугольник ACL: угол ALC = 75°, угол LAC = 40°, тогда угол ACL = 180° - (75°+40°)= 65°.
Ответ: 65°.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос